50 research outputs found

    Cyclic sieving and cluster multicomplexes

    Get PDF
    Reiner, Stanton, and White \cite{RSWCSP} proved results regarding the enumeration of polygon dissections up to rotational symmetry. Eu and Fu \cite{EuFu} generalized these results to Cartan-Killing types other than A by means of actions of deformed Coxeter elements on cluster complexes of Fomin and Zelevinsky \cite{FZY}. The Reiner-Stanton-White and Eu-Fu results were proven using direct counting arguments. We give representation theoretic proofs of closely related results using the notion of noncrossing and semi-noncrossing tableaux due to Pylyavskyy \cite{PN} as well as some geometric realizations of finite type cluster algebras due to Fomin and Zelevinsky \cite{FZClusterII}.Comment: To appear in Adv. Appl. Mat

    Alexander Duality and Rational Associahedra

    Full text link
    A recent pair of papers of Armstrong, Loehr, and Warrington and Armstrong, Williams, and the author initiated the systematic study of {\em rational Catalan combinatorics} which is a generalization of Fuss-Catalan combinatorics (which is in turn a generalization of classical Catalan combinatorics). The latter paper gave two possible models for a rational analog of the associahedron which attach simplicial complexes to any pair of coprime positive integers a < b. These complexes coincide up to the Fuss-Catalan level of generality, but in general one may be a strict subcomplex of the other. Verifying a conjecture of Armstrong, Williams, and the author, we prove that these complexes agree up to homotopy and, in fact, that one complex collapses onto the other. This reconciles the two competing models for rational associahedra. As a corollary, we get that the involution (a < b) \longleftrightarrow (b-a < b) on pairs of coprime positive integers manifests itself topologically as Alexander duality of rational associahedra. This collapsing and Alexander duality are new features of rational Catalan combinatorics which are invisible at the Fuss-Catalan level of generality.Comment: 23 page

    Enumeration of connected Catalan objects by type

    Get PDF
    Noncrossing set partitions, nonnesting set partitions, Dyck paths, and rooted plane trees are four classes of Catalan objects which carry a notion of type. There exists a product formula which enumerates these objects according to type. We define a notion of `connectivity' for these objects and prove an analogous product formula which counts connected objects by type. Our proof of this product formula is combinatorial and bijective. We extend this to a product formula which counts objects with a fixed type and number of connected components. We relate our product formulas to symmetric functions arising from parking functions. We close by presenting an alternative proof of our product formulas communicated to us by Christian Krattenthaler which uses generating functions and Lagrange inversion
    corecore